Generalization of Strang's Preconditioner with Applications to Toeplitz Least Squares Problems

نویسندگان

  • Raymond H. Chan
  • Michael K. Ng
  • Robert J. Plemmons
چکیده

In this paper, we propose a method to generalize Strang's circulant preconditioner for arbitrary n-by-n matrices An. The n 2 th column of our circulant preconditioner Sn is equal to the n 2 th column of the given matrix An. Thus if An is a square Toeplitz matrix, then Sn is just the Strang circulant preconditioner. When Sn is not Hermitian, our circulant preconditioner can be deened as (S n Sn) 1=2. This construction is similar to the forward-backward projection method used in constructing preconditioners for tomographic inversion problems in medical imaging. We show that if the matrix An has decaying coeecients away from the main diagonal, then (S n Sn) 1=2 is a good preconditioner for An. Comparisons of our preconditioner with other circulant-based preconditioners are carried out for some 1{D Toeplitz least squares problems: min kb ? Axk 2. Preliminary numerical results show that our preconditioner performs quite well, in comparison to other circulant preconditioners. Promising test results are also reported for a 2{D deconvolution problem arising in ground{based atmospheric imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of Toeplitz Normal Equations by Sine Transform Based Preconditioning

The normal equations constructed by a Toeplitz matrix are studied, in order to nd a suitable preconditioner related to the discrete sine transform. New results are given about the structure of the product of two Toeplitz matrices, which allow the CGN method to achieve a superlinear rate of convergence. This preconditioner outperforms the circulant one for the iterative solution of Toeplitz leas...

متن کامل

Iterative Solution of Toeplitz Systems by Preconditioning with the Discrete Sine Transform

Solving linear systems or least-squares problems related to Toeplitz matrices is often required in the context of signal and image processing; Conjugate-Gradient-like methods are well-suited for solving such problems. The recent preconditioning technique involving the discrete sine transform is presented: convergence properties are reported and suitable generalizations to block matrices, nonsym...

متن کامل

Preconditioned Iterative Methods for Weighted Toeplitz Least Squares Problems

We consider the iterative solution of weighted Toeplitz least squares problems. Our approach is based on an augmented system formulation. We focus our attention on two types of preconditioners: a variant of constraint preconditioning, and the Hermitian/skew-Hermitian splitting (HSS) preconditioner. Bounds on the eigenvalues of the preconditioned matrices are given in terms of problem and algori...

متن کامل

Generalized circulant Strang-type preconditioners

SUMMARY Strang's proposal to use a circulant preconditioner for linear systems of equations with a Hermitian positive definite Toeplitz matrix has given rise to considerable research on circulant preconditioners. This paper presents an {e iϕ }-circulant Strang-type preconditioner.

متن کامل

A Total Least Squares Methodfor Toeplitz

A Newton method to solve total least squares problems for Toeplitz systems of equations is considered. When coupled with a bisection scheme, which is based on an eecient algorithm for factoring Toeplitz matrices, global convergence can be guaranteed. Circulant and approximate factorization preconditioners are proposed to speed convergence when a conjugate gradient method is used to solve linear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1996